首页> 外文OA文献 >Prospects in the orbital and rotational dynamics of the Moon with the advent of sub-centimeter lunar laser ranging
【2h】

Prospects in the orbital and rotational dynamics of the Moon with the advent of sub-centimeter lunar laser ranging

机译:亚厘米月球激光测距技术的问世,月球的轨道和旋转动力学的前景

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Lunar Laser Ranging (LLR) measurements are crucial for advanced exploration of the laws of fundamental gravitational physics and geophysics. Current LLR technology allows us to measure distances to the Moon with a precision approaching 1 millimeter. As NASA pursues the vision of taking humans back to the Moon, new, more precise laser ranging applications will be demanded, including continuous tracking from more sites on Earth, placing new CCR arrays on the Moon, and possibly installing other devices such as transponders, etc. Successful achievement of this goal strongly demands further significant improvement of the theoretical model of the orbital and rotational dynamics of the Earth-Moon system. This model should inevitably be based on the theory of general relativity, fully incorporate the relevant geophysical processes, lunar librations, tides, and should rely upon the most recent standards and recommendations of the IAU for data analysis. This paper discusses methods and problems in developing such a mathematical model. The model will take into account all the classical and relativistic effects in the orbital and rotational motion of the Moon and Earth at the sub-centimeter level. The new model will allow us to navigate a spacecraft precisely to a location on the Moon. It will also greatly improve our understanding of the structure of the lunar interior and the nature of the physical interaction at the core-mantle interface layer. The new theory and upcoming millimeter LLR will give us the means to perform one of the most precise fundamental tests of general relativity in the solar system.
机译:月球激光测距(LLR)测量对于基础重力物理学和地球物理学定律的深入探索至关重要。当前的LLR技术使我们能够以接近1毫米的精度测量距月球的距离。随着NASA追求将人类带回月球的愿景,将需要新的,更精确的激光测距应用程序,包括从地球上更多站点连续跟踪,将新的CCR阵列放置在月球上,以及可能安装其他设备(例如应答器),为了成功实现这一目标,强烈要求进一步完善地月系统轨道和旋转动力学的理论模型。该模型不可避免地应基于广义相对论,充分纳入相关的地球物理过程,月球释放,潮汐,并应依赖IAU的最新标准和建议进行数据分析。本文讨论了开发这种数学模型的方法和问题。该模型将考虑月球和地球在亚厘米级别的轨道和旋转运动中的所有经典和相对论效应。新模型将使我们能够将航天器精确地导航到月球上的某个位置。这也将大大提高我们对月球内部结构和核心—幔界面层物理相互作用本质的理解。新的理论和即将到来的毫米LLR将为我们提供进行太阳系广义相对论最精确的基础测试之一的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号